References

Aad, Georges et al. 2022. Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector.” Phys. Rev. D 106 (5): 052001. https://doi.org/10.1103/PhysRevD.106.052001.
ATLAS Collaboration. 2008. The ATLAS Experiment at the CERN Large Hadron Collider.” JINST 3: S08003. https://doi.org/10.1088/1748-0221/3/08/S08003.
———. 2022a. “ATLAS Summary Physics Plots.” https://atlaspo.cern.ch/public/summary_plots/.
———. 2022b. “Measurement of the Higgs Boson Mass in the H → ZZ* → 4ℓ Decay Channel Using 139 Fb−1 of $\sqrt{s}=13$ TeV pp Collisions Recorded by the ATLAS Detector at the LHC.” arXiv. https://doi.org/10.48550/ARXIV.2207.00320.
ATLAS-Collaboration. 2012. “Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC.” Physics Letters B 716 (1): 1–29. https://doi.org/10.1016/j.physletb.2012.08.020.
Baldi, Pierre, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. 2016. “Parameterized Neural Networks for High-Energy Physics.” The European Physical Journal C 76 (5). https://doi.org/10.1140/epjc/s10052-016-4099-4.
Ball, Richard D. et al. 2015. Parton distributions for the LHC Run II.” JHEP 04: 040. https://doi.org/10.1007/JHEP04(2015)040.
Blondel, Mathieu, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert. 2021. “Efficient and Modular Implicit Differentiation.” arXiv Preprint arXiv:2105.15183.
Bothmann, Enrico, Gurpreet Singh Chahal, Stefan Höche, Johannes Krause, Frank Krauss, Silvan Kuttimalai, Sebastian Liebschner, et al. 2019. “Event Generation with Sherpa 2.2.” SciPost Physics 7 (3). https://doi.org/10.21468/scipostphys.7.3.034.
Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, et al. 2018. JAX: Composable Transformations of Python+NumPy Programs (version 0.2.5). http://github.com/google/jax.
Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar Velickovic. 2021. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.” CoRR abs/2104.13478. https://arxiv.org/abs/2104.13478.
Buckley, Andy, Christopher White, and Martin White. 2021. Practical Collider Physics. 2053-2563. IOP Publishing. https://doi.org/10.1088/978-0-7503-2444-1.
Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, et al. 2013. API Design for Machine Learning Software: Experiences from the Scikit-Learn Project.” In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–22.
Castro, Pablo de, and Tommaso Dorigo. 2019. “INFERNO: Inference-Aware Neural Optimisation.” Computer Physics Communications 244 (November): 170–79. https://doi.org/10.1016/j.cpc.2019.06.007.
CERN. 2017. “CERN Yellow Reports: Monographs, Vol 2 (2017): Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector.” CERN. https://doi.org/10.23731/CYRM-2017-002.
Chollet, François et al. 2015. “Keras.” https://keras.io.
Cousins, Robert D. 2018. “Lectures on Statistics in Theory: Prelude to Statistics in Practice.” arXiv. https://doi.org/10.48550/ARXIV.1807.05996.
Cowan, Glen, Kyle Cranmer, Eilam Gross, and Ofer Vitells. 2011. “Asymptotic Formulae for Likelihood-Based Tests of New Physics.” The European Physical Journal C 71 (2). https://doi.org/10.1140/epjc/s10052-011-1554-0.
Cranmer, Kyle. 2014. Practical Statistics for the LHC.” In 2011 European School of High-Energy Physics, 267–308. https://doi.org/10.5170/CERN-2014-003.267.
———. 2020. “Neyman-Pearson Lemma.” http://theoryandpractice.org/stats-ds-book/statistics/neyman_pearson.html.
Cranmer, Kyle, George Lewis, Lorenzo Moneta, Akira Shibata, and Wouter Verkerke. 2012. HistFactory: A tool for creating statistical models for use with RooFit and RooStats.” New York: New York U. https://cds.cern.ch/record/1456844.
Cranmer, Kyle, Juan Pavez, and Gilles Louppe. 2015. “Approximating Likelihood Ratios with Calibrated Discriminative Classifiers.” arXiv. https://doi.org/10.48550/ARXIV.1506.02169.
Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. 2016. “Density Estimation Using Real NVP.” CoRR abs/1605.08803. http://arxiv.org/abs/1605.08803.
Doglioni, Caterina, Suarez Rebeca, Nathan Simpson, Geoffrey Mullier, David Cox, and William Kalderon. 2019. “The MEAL Collaboration (MEat Ball AcceLerator).” Stupid Hackathon Sweden. https://docs.google.com/presentation/d/1gsmlsq8gu11pZV4X-yBy_g1DLFZXASfZgYrS-vn17SU/edit?usp=sharing.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. 2020. “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” CoRR abs/2010.11929. https://arxiv.org/abs/2010.11929.
Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios. 2020. nflows: Normalizing Flows in PyTorch (version v0.14). Zenodo. https://doi.org/10.5281/zenodo.4296287.
Duvenaud, David, Matt Johnson, and Zico Kolter. n.d. “Deep Implicit Layers - Neural Odes, Deep Equilibirum Models, and Beyond.” Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond. http://implicit-layers-tutorial.org/.
Ellwanger, Ulrich, Cyril Hugonie, and Ana M. Teixeira. 2010. “The Next-to-Minimal Supersymmetric Standard Model.” Physics Reports 496 (1): 1–77. https://doi.org/https://doi.org/10.1016/j.physrep.2010.07.001.
Feldman, Gary J., and Robert D. Cousins. 1998. “Unified Approach to the Classical Statistical Analysis of Small Signals.” Physical Review D 57 (7): 3873–89. https://doi.org/10.1103/physrevd.57.3873.
Finetti, Bruno de. 1970. Theory of Probability: A Critical Introductory Treatment. New York: John Wiley.
Fletcher, Roger. 1987. Practical Methods of Optimization. Second. New York, NY, USA: John Wiley & Sons.
Fromme, Lars, Stephan J Huber, and Michael Seniuch. 2006. “Baryogenesis in the Two-Higgs Doublet Model.” Journal of High Energy Physics 2006 (11): 038–38. https://doi.org/10.1088/1126-6708/2006/11/038.
Ganaie, Mudasir A., Minghui Hu, Mohammad Tanveer, and Ponnuthurai N. Suganthan. 2021. “Ensemble Deep Learning: A Review.” CoRR abs/2104.02395. https://arxiv.org/abs/2104.02395.
Germain, Mathieu, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE: Masked Autoencoder for Distribution Estimation.” CoRR abs/1502.03509. http://arxiv.org/abs/1502.03509.
Görtler, Jochen, Rebecca Kehlbeck, and Oliver Deussen. 2019. “A Visual Exploration of Gaussian Processes.” Distill. https://doi.org/10.23915/distill.00017.
Guest, Dan, Kyle Cranmer, and Daniel Whiteson. 2018. “Deep Learning and Its Application to LHC Physics.” Annual Review of Nuclear and Particle Science 68 (1): 161–81. https://doi.org/10.1146/annurev-nucl-101917-021019.
He, Xiao-Gang, Tong Li, Xue-Qian Li, Jusak Tandean, and Ho-Chin Tsai. 2009. “Constraints on Scalar Dark Matter from Direct Experimental Searches.” Phys. Rev. D 79: 0235212. https://doi.org/10.1103/PhysRevD.79.023521.
Heinrich, Lukas. 2020. Lukasheinrich/Pyhep2020-Autodiff-Tutorial 0.0.2 (version 0.0.2). Zenodo. https://doi.org/10.5281/zenodo.4067099.
Heinrich, Lukas, Matthew Feickert, and Giordon Stark. n.d. pyhf: v0.6.3 (version 0.6.3). https://doi.org/10.5281/zenodo.1169739.
Heinrich, Lukas, and Michael Kagan. 2022. “Differentiable Matrix Elements with MadJax.” arXiv. https://doi.org/10.48550/ARXIV.2203.00057.
Hinton, Geoffrey. 2018. “Neural Networks for Machine Learning Lecture 6a: Overview of Mini-Batch Gradient Descent.” https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Ilya F. Ginzburg, Maria Krawczyk and Per Osland. 2002. Two-Higgs-Doublet Models with CP violation.” https://arxiv.org/abs/0211371.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.” arXiv. https://doi.org/10.48550/ARXIV.1412.6980.
Komiske, Patrick T., Eric M. Metodiev, and Jesse Thaler. 2019. “Energy Flow Networks: Deep Sets for Particle Jets.” Journal of High Energy Physics 2019 (1). https://doi.org/10.1007/jhep01(2019)121.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Lerner, Rose N., and John McDonald. 2009. “Gauge Singlet Scalar as Inflaton and Thermal Relic Dark Matter.” Phys. Rev. D 80 (December): 123507. https://doi.org/10.1103/PhysRevD.80.123507.
Mayo, Deborah G. 2018. Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars. Cambridge University Press. https://doi.org/10.1017/9781107286184.
Nachman, Benjamin, and Stefan Prestel. 2022. “Morphing Parton Showers with Event Derivatives.” arXiv. https://doi.org/10.48550/ARXIV.2208.02274.
Neyman, J., and E. S. Pearson. 1933. “On the Problem of the Most Efficient Tests of Statistical Hypotheses.” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 231: 289–337. http://www.jstor.org/stable/91247.
Oerter, R. 2006. The theory of almost everything: The standard model, the unsung triumph of modern physics.
Oxford University. 2021. “Why Two Higgs Are Better Than One.” website. https://www.physics.ox.ac.uk/news/why-two-higgs-are-better-one.
Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. 2019. “Normalizing Flows for Probabilistic Modeling and Inference.” https://doi.org/10.48550/ARXIV.1912.02762.
Papamakarios, George, Theo Pavlakou, and Iain Murray. 2017. “Masked Autoregressive Flow for Density Estimation.” arXiv. https://doi.org/10.48550/ARXIV.1705.07057.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” CoRR abs/1912.01703. http://arxiv.org/abs/1912.01703.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.
Qian, Ning. 1999. “On the Momentum Term in Gradient Descent Learning Algorithms.” Neural Networks 12 (1): 145–51. https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6.
Read, A L. 2002. “Presentation of Search Results: The CLs Technique.” Journal of Physics G: Nuclear and Particle Physics 28 (10): 2693. https://doi.org/10.1088/0954-3899/28/10/313.
Ryd, Anders, David Lange, Natalia Kuznetsova, Sophie Versille, Marcello Rotondo, David P. Kirkby, Frank K. Wuerthwein, and Akimasa Ishikawa. 2005. EvtGen: A Monte Carlo Generator for B-Physics,” May.
Samuel, Arthur L. 1962. “Artificial Intelligence: A Frontier of Automation.” The Annals of the American Academy of Political and Social Science 340: 10–20. http://www.jstor.org/stable/1033694.
Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. “The Graph Neural Network Model.” IEEE Transactions on Neural Networks 20 (1): 61–80. https://doi.org/10.1109/TNN.2008.2005605.
Sebastian Baum, Nausheen R. Shah. 2010. Benchmark Suggestions for Resonant Double Higgs Production at the LHC for Extended Higgs Sectors.” https://arxiv.org/abs/1904.10810.
Senn, Stephen. 2011. “You May Believe You Are a Bayesian but You Are Probably Wrong.” Rationality, Markets and Morals 2 (January).
Shafer, Glenn, and Vladimir Vovk. 2006. “The Sources of Kolmogorov’s Grundbegriffe.” Statistical Science 21 (1). https://doi.org/10.1214/088342305000000467.
Simpson, Nathan. 2022a. relaxed: version 0.1.3 (version v0.1.3). https://doi.org/10.5281/zenodo.6330891.
———. 2022b. phinate/differentiable-analysis-examples (version PyHEP2022 (0.1.3)). https://doi.org/10.5281/zenodo.7129990.
Simpson, Nathan, and Lukas Heinrich. 2021. neos: version 0.2.0 (version v0.2.0). https://doi.org/10.5281/zenodo.6351423.
Sivia, D., and J. Skilling. 2006. Data Analysis: A Bayesian Tutorial. Oxford Science Publications. OUP Oxford. https://books.google.ch/books?id=lYMSDAAAQBAJ.
Sjöstrand, Torbjörn, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. 2015. “An Introduction to PYTHIA 8.2.” Computer Physics Communications 191 (June): 159–77. https://doi.org/10.1016/j.cpc.2015.01.024.
Skilling, John. 2006. Nested sampling for general Bayesian computation.” Bayesian Analysis 1 (4): 833–59. https://doi.org/10.1214/06-BA127.
———. 2008. “This Physicist’s View of Gelman Bayes.” http://www.stat.columbia.edu/~gelman/stuff_for_blog/rant2.pdf.
Spruyt, Vincent. 2014. “A Geometric Interpretation of the Covariance Matrix.” website.
Tania Robens, Tim Stefaniak, and Jonas Wittbrodt. 2020. “Two-Real-Scalar-Singlet Extension of the SM: LHC Phenomenology and Benchmark Scenarios.” The European Physical Journal C 80 (151). https://doi.org/https://doi.org/10.1140/epjc/s10052-020-7655-x.
Tong, David. 2022. “David Tong: Lectures on Particle Physics.” Website. https://www.damtp.cam.ac.uk/user/tong/particle.html.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” CoRR abs/1706.03762. http://arxiv.org/abs/1706.03762.
Wald, Abraham. 1943. “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations Is Large.” Transactions of the American Mathematical Society 54 (3): 426–82. http://www.jstor.org/stable/1990256.
Wilks, S. S. 1938. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses.” The Annals of Mathematical Statistics 9 (1): 60–62. https://doi.org/10.1214/aoms/1177732360.
Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. 2017. “Deep Sets.” arXiv. https://doi.org/10.48550/ARXIV.1703.06114.
Zeiler, Matthew D. 2012. ADADELTA: An Adaptive Learning Rate Method.” CoRR abs/1212.5701. http://arxiv.org/abs/1212.5701.