References
Aad, Georges et al. 2022. “Search for Higgs
boson pair production in the two bottom quarks plus two photons final
state in pp
collisions at $\sqrt{s}=13$ TeV with
the ATLAS detector.” Phys. Rev. D 106 (5):
052001. https://doi.org/10.1103/PhysRevD.106.052001.
ATLAS Collaboration. 2008. “The ATLAS
Experiment at the CERN Large Hadron Collider.”
JINST 3: S08003. https://doi.org/10.1088/1748-0221/3/08/S08003.
———. 2022a. “ATLAS Summary Physics Plots.” https://atlaspo.cern.ch/public/summary_plots/.
———. 2022b. “Measurement of the Higgs Boson Mass in the H → ZZ* → 4ℓ
Decay Channel Using 139 Fb−1
of $\sqrt{s}=13$ TeV pp Collisions Recorded by
the ATLAS Detector at the LHC.” arXiv. https://doi.org/10.48550/ARXIV.2207.00320.
ATLAS-Collaboration. 2012. “Observation of a New Particle in the
Search for the Standard Model Higgs Boson with the ATLAS Detector at the
LHC.” Physics Letters B 716 (1): 1–29. https://doi.org/10.1016/j.physletb.2012.08.020.
Baldi, Pierre, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel
Whiteson. 2016. “Parameterized Neural Networks for High-Energy
Physics.” The European Physical Journal C 76 (5). https://doi.org/10.1140/epjc/s10052-016-4099-4.
Ball, Richard D. et al. 2015. “Parton
distributions for the LHC Run II.” JHEP 04: 040.
https://doi.org/10.1007/JHEP04(2015)040.
Blondel, Mathieu, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan
Hoyer, Felipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert.
2021. “Efficient and Modular Implicit Differentiation.”
arXiv Preprint arXiv:2105.15183.
Bothmann, Enrico, Gurpreet Singh Chahal, Stefan Höche, Johannes Krause,
Frank Krauss, Silvan Kuttimalai, Sebastian Liebschner, et al. 2019.
“Event Generation with Sherpa 2.2.”
SciPost Physics 7 (3). https://doi.org/10.21468/scipostphys.7.3.034.
Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, et al. 2018.
JAX: Composable Transformations of
Python+NumPy Programs
(version 0.2.5). http://github.com/google/jax.
Bronstein, Michael M., Joan Bruna, Taco Cohen, and Petar Velickovic.
2021. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges.” CoRR abs/2104.13478. https://arxiv.org/abs/2104.13478.
Buckley, Andy, Christopher White, and Martin White. 2021. Practical
Collider Physics. 2053-2563. IOP Publishing. https://doi.org/10.1088/978-0-7503-2444-1.
Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, et al. 2013.
“API Design for Machine Learning Software:
Experiences from the Scikit-Learn Project.” In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, 108–22.
Castro, Pablo de, and Tommaso Dorigo. 2019. “INFERNO:
Inference-Aware Neural Optimisation.” Computer Physics
Communications 244 (November): 170–79. https://doi.org/10.1016/j.cpc.2019.06.007.
CERN. 2017. “CERN Yellow Reports: Monographs, Vol 2 (2017):
Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the
Higgs Sector.” CERN. https://doi.org/10.23731/CYRM-2017-002.
Chollet, François et al. 2015. “Keras.” https://keras.io.
Cousins, Robert D. 2018. “Lectures on Statistics in Theory:
Prelude to Statistics in Practice.” arXiv. https://doi.org/10.48550/ARXIV.1807.05996.
Cowan, Glen, Kyle Cranmer, Eilam Gross, and Ofer Vitells. 2011.
“Asymptotic Formulae for Likelihood-Based Tests of New
Physics.” The European Physical Journal C 71 (2). https://doi.org/10.1140/epjc/s10052-011-1554-0.
Cranmer, Kyle. 2014. “Practical Statistics
for the LHC.” In 2011 European
School of High-Energy Physics, 267–308. https://doi.org/10.5170/CERN-2014-003.267.
———. 2020. “Neyman-Pearson Lemma.” http://theoryandpractice.org/stats-ds-book/statistics/neyman_pearson.html.
Cranmer, Kyle, George Lewis, Lorenzo Moneta, Akira Shibata, and Wouter
Verkerke. 2012. “HistFactory: A tool for
creating statistical models for use with RooFit and
RooStats.” New York: New York U. https://cds.cern.ch/record/1456844.
Cranmer, Kyle, Juan Pavez, and Gilles Louppe. 2015. “Approximating
Likelihood Ratios with Calibrated Discriminative Classifiers.”
arXiv. https://doi.org/10.48550/ARXIV.1506.02169.
Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. 2016.
“Density Estimation Using Real NVP.”
CoRR abs/1605.08803. http://arxiv.org/abs/1605.08803.
Doglioni, Caterina, Suarez Rebeca, Nathan Simpson, Geoffrey Mullier,
David Cox, and William Kalderon. 2019. “The MEAL Collaboration
(MEat Ball AcceLerator).” Stupid Hackathon Sweden. https://docs.google.com/presentation/d/1gsmlsq8gu11pZV4X-yBy_g1DLFZXASfZgYrS-vn17SU/edit?usp=sharing.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.
2020. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” CoRR abs/2010.11929. https://arxiv.org/abs/2010.11929.
Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios.
2020. nflows: Normalizing Flows in
PyTorch (version v0.14). Zenodo. https://doi.org/10.5281/zenodo.4296287.
Duvenaud, David, Matt Johnson, and Zico Kolter. n.d. “Deep
Implicit Layers - Neural Odes, Deep Equilibirum Models, and
Beyond.” Deep Implicit Layers - Neural ODEs, Deep Equilibirum
Models, and Beyond. http://implicit-layers-tutorial.org/.
Ellwanger, Ulrich, Cyril Hugonie, and Ana M. Teixeira. 2010. “The
Next-to-Minimal Supersymmetric Standard Model.” Physics
Reports 496 (1): 1–77. https://doi.org/https://doi.org/10.1016/j.physrep.2010.07.001.
Feldman, Gary J., and Robert D. Cousins. 1998. “Unified Approach
to the Classical Statistical Analysis of Small Signals.”
Physical Review D 57 (7): 3873–89. https://doi.org/10.1103/physrevd.57.3873.
Finetti, Bruno de. 1970. Theory of Probability: A Critical
Introductory Treatment. New York: John Wiley.
Fletcher, Roger. 1987. Practical Methods of Optimization.
Second. New York, NY, USA: John Wiley & Sons.
Fromme, Lars, Stephan J Huber, and Michael Seniuch. 2006.
“Baryogenesis in the Two-Higgs Doublet Model.” Journal
of High Energy Physics 2006 (11): 038–38. https://doi.org/10.1088/1126-6708/2006/11/038.
Ganaie, Mudasir A., Minghui Hu, Mohammad Tanveer, and Ponnuthurai N.
Suganthan. 2021. “Ensemble Deep Learning: A
Review.” CoRR abs/2104.02395. https://arxiv.org/abs/2104.02395.
Germain, Mathieu, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015.
“MADE: Masked Autoencoder for Distribution
Estimation.” CoRR abs/1502.03509. http://arxiv.org/abs/1502.03509.
Görtler, Jochen, Rebecca Kehlbeck, and Oliver Deussen. 2019. “A
Visual Exploration of Gaussian Processes.” Distill. https://doi.org/10.23915/distill.00017.
Guest, Dan, Kyle Cranmer, and Daniel Whiteson. 2018. “Deep
Learning and Its Application to LHC Physics.”
Annual Review of Nuclear and Particle Science 68 (1): 161–81.
https://doi.org/10.1146/annurev-nucl-101917-021019.
He, Xiao-Gang, Tong Li, Xue-Qian Li, Jusak Tandean, and Ho-Chin Tsai.
2009. “Constraints on Scalar Dark Matter from Direct Experimental
Searches.” Phys. Rev. D 79: 0235212. https://doi.org/10.1103/PhysRevD.79.023521.
Heinrich, Lukas. 2020. Lukasheinrich/Pyhep2020-Autodiff-Tutorial
0.0.2 (version 0.0.2). Zenodo. https://doi.org/10.5281/zenodo.4067099.
Heinrich, Lukas, Matthew Feickert, and Giordon Stark. n.d. pyhf: v0.6.3 (version 0.6.3). https://doi.org/10.5281/zenodo.1169739.
Heinrich, Lukas, and Michael Kagan. 2022. “Differentiable Matrix
Elements with MadJax.” arXiv. https://doi.org/10.48550/ARXIV.2203.00057.
Hinton, Geoffrey. 2018. “Neural Networks for Machine Learning
Lecture 6a: Overview of Mini-Batch Gradient Descent.” https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Ilya F. Ginzburg, Maria Krawczyk and Per Osland. 2002. “Two-Higgs-Doublet Models with CP
violation.” https://arxiv.org/abs/0211371.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” arXiv. https://doi.org/10.48550/ARXIV.1412.6980.
Komiske, Patrick T., Eric M. Metodiev, and Jesse Thaler. 2019.
“Energy Flow Networks: Deep Sets for Particle Jets.”
Journal of High Energy Physics 2019 (1). https://doi.org/10.1007/jhep01(2019)121.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural
Networks.” In Advances in Neural Information Processing
Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q.
Weinberger. Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Lerner, Rose N., and John McDonald. 2009. “Gauge Singlet Scalar as
Inflaton and Thermal Relic Dark Matter.” Phys. Rev. D 80
(December): 123507. https://doi.org/10.1103/PhysRevD.80.123507.
Mayo, Deborah G. 2018. Statistical Inference as Severe Testing: How
to Get Beyond the Statistics Wars. Cambridge University Press. https://doi.org/10.1017/9781107286184.
Nachman, Benjamin, and Stefan Prestel. 2022. “Morphing Parton
Showers with Event Derivatives.” arXiv. https://doi.org/10.48550/ARXIV.2208.02274.
Neyman, J., and E. S. Pearson. 1933. “On the Problem of the Most
Efficient Tests of Statistical Hypotheses.” Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character 231: 289–337. http://www.jstor.org/stable/91247.
Oerter, R. 2006. The theory of almost
everything: The standard model, the unsung triumph of modern
physics.
Oxford University. 2021. “Why Two Higgs Are Better Than
One.” website. https://www.physics.ox.ac.uk/news/why-two-higgs-are-better-one.
Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. 2019. “Normalizing Flows for
Probabilistic Modeling and Inference.” https://doi.org/10.48550/ARXIV.1912.02762.
Papamakarios, George, Theo Pavlakou, and Iain Murray. 2017.
“Masked Autoregressive Flow for Density Estimation.” arXiv.
https://doi.org/10.48550/ARXIV.1705.07057.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.”
CoRR abs/1912.01703. http://arxiv.org/abs/1912.01703.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning
in Python.” Journal of Machine Learning
Research 12: 2825–30.
Qian, Ning. 1999. “On the Momentum Term in Gradient Descent
Learning Algorithms.” Neural Networks 12 (1): 145–51.
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6.
Read, A L. 2002. “Presentation of Search Results: The CLs
Technique.” Journal of Physics G: Nuclear and Particle
Physics 28 (10): 2693. https://doi.org/10.1088/0954-3899/28/10/313.
Ryd, Anders, David Lange, Natalia Kuznetsova, Sophie Versille, Marcello
Rotondo, David P. Kirkby, Frank K. Wuerthwein, and Akimasa Ishikawa.
2005. “EvtGen: A Monte Carlo Generator for
B-Physics,” May.
Samuel, Arthur L. 1962. “Artificial Intelligence: A Frontier of
Automation.” The Annals of the American Academy of Political
and Social Science 340: 10–20. http://www.jstor.org/stable/1033694.
Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. “The Graph Neural Network
Model.” IEEE Transactions on Neural Networks 20 (1):
61–80. https://doi.org/10.1109/TNN.2008.2005605.
Sebastian Baum, Nausheen R. Shah. 2010. “Benchmark Suggestions for Resonant Double Higgs
Production at the LHC for Extended Higgs Sectors.” https://arxiv.org/abs/1904.10810.
Senn, Stephen. 2011. “You May Believe You Are a Bayesian but You
Are Probably Wrong.” Rationality, Markets and Morals 2
(January).
Shafer, Glenn, and Vladimir Vovk. 2006. “The Sources of
Kolmogorov’s Grundbegriffe.” Statistical Science 21 (1).
https://doi.org/10.1214/088342305000000467.
Simpson, Nathan. 2022a. relaxed: version
0.1.3 (version v0.1.3). https://doi.org/10.5281/zenodo.6330891.
———. 2022b. phinate/differentiable-analysis-examples
(version PyHEP2022 (0.1.3)). https://doi.org/10.5281/zenodo.7129990.
Simpson, Nathan, and Lukas Heinrich. 2021. neos: version 0.2.0 (version v0.2.0). https://doi.org/10.5281/zenodo.6351423.
Sivia, D., and J. Skilling. 2006. Data Analysis: A Bayesian
Tutorial. Oxford Science Publications. OUP Oxford. https://books.google.ch/books?id=lYMSDAAAQBAJ.
Sjöstrand, Torbjörn, Stefan Ask, Jesper R. Christiansen, Richard Corke,
Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine
O. Rasmussen, and Peter Z. Skands. 2015. “An Introduction to
PYTHIA 8.2.” Computer Physics
Communications 191 (June): 159–77. https://doi.org/10.1016/j.cpc.2015.01.024.
Skilling, John. 2006. “Nested sampling for
general Bayesian computation.” Bayesian Analysis
1 (4): 833–59. https://doi.org/10.1214/06-BA127.
———. 2008. “This Physicist’s View of Gelman Bayes.” http://www.stat.columbia.edu/~gelman/stuff_for_blog/rant2.pdf.
Spruyt, Vincent. 2014. “A Geometric Interpretation of the
Covariance Matrix.” website.
Tania Robens, Tim Stefaniak, and Jonas Wittbrodt. 2020.
“Two-Real-Scalar-Singlet Extension of the SM: LHC Phenomenology
and Benchmark Scenarios.” The European Physical Journal
C 80 (151). https://doi.org/https://doi.org/10.1140/epjc/s10052-020-7655-x.
Tong, David. 2022. “David Tong: Lectures on Particle
Physics.” Website. https://www.damtp.cam.ac.uk/user/tong/particle.html.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” CoRR abs/1706.03762.
http://arxiv.org/abs/1706.03762.
Wald, Abraham. 1943. “Tests of Statistical Hypotheses Concerning
Several Parameters When the Number of Observations Is Large.”
Transactions of the American Mathematical Society 54 (3):
426–82. http://www.jstor.org/stable/1990256.
Wilks, S. S. 1938. “The Large-Sample
Distribution of the Likelihood Ratio for Testing Composite
Hypotheses.” The Annals of Mathematical
Statistics 9 (1): 60–62. https://doi.org/10.1214/aoms/1177732360.
Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Ruslan Salakhutdinov, and Alexander Smola. 2017. “Deep
Sets.” arXiv. https://doi.org/10.48550/ARXIV.1703.06114.
Zeiler, Matthew D. 2012. “ADADELTA: An Adaptive
Learning Rate Method.” CoRR abs/1212.5701. http://arxiv.org/abs/1212.5701.